Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte
نویسندگان
چکیده
منابع مشابه
Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte
The excitatory postsynaptic potential (EPSP) of biological synapses is mimicked in indium-zinc-oxide synaptic transistors gated by methyl cellulose solid electrolyte. These synaptic transistors show excellent electrical performance at an operating voltage of 0.8 V, Ion/off ratio of 2.5 × 106, and mobility of 38.4 cm2/Vs. After this device is connected to a resistance of 4 MΩ in series, it exhib...
متن کاملLearning and Spatiotemporally Correlated Functions Mimicked in Oxide-Based Artificial Synaptic Transistors
Learning and logic are fundamental brain functions that make the individual to adapt to the environment, and such functions are established in human brain by modulating ionic fluxes in synapses. Nanoscale ionic/electronic devices with inherent synaptic functions are considered to be essential building blocks for artificial neural networks. Here, Multi-terminal IZO-based artificial synaptic tran...
متن کاملSynaptic adhesion molecules and excitatory synaptic transmission
Synaptic adhesion molecules have been extensively studied for their contribution to the regulation of synapse development through trans-synaptic adhesions. However, accumulating evidence increasingly indicates that synaptic adhesion molecules are also involved in the regulation of excitatory synaptic transmission and plasticity, often through direct or close associations with excitatory neurotr...
متن کاملStrain-gated piezotronic transistors based on vertical zinc oxide nanowires.
Strain-gated piezotronic transistors have been fabricated using vertically aligned ZnO nanowires (NWs), which were grown on GaN/sapphire substrates using a vapor-liquid-solid process. The gate electrode of the transistor is replaced by the internal crystal potential generated by strain, and the control over the transported current is at the interface between the nanowire and the top or bottom e...
متن کاملAxonal localization of an excitatory post-synaptic potential in a molluscan neurone.
The excitatory post-synaptic potentials (EPSPs) of molluscan neurones presumably result, as in other cells (Fatt & Katz, 1951; Eccles, 1964), from an increase in membrane conductance to one or more ions which tends to drive the membrane toward a reversal potential near zero. Consequently, membrane hyperpolarization should increase the amplitude of an EPSP, whereas depolarization should have the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep38578